Ccr4-Not Regulates RNA Polymerase I Transcription and Couples Nutrient Signaling to the Control of Ribosomal RNA Biogenesis
نویسندگان
چکیده
Ribosomal RNA synthesis is controlled by nutrient signaling through the mechanistic target of rapamycin complex 1 (mTORC1) pathway. mTORC1 regulates ribosomal RNA expression by affecting RNA Polymerase I (Pol I)-dependent transcription of the ribosomal DNA (rDNA) but the mechanisms involved remain obscure. This study provides evidence that the Ccr4-Not complex, which regulates RNA Polymerase II (Pol II) transcription, also functions downstream of mTORC1 to control Pol I activity. Ccr4-Not localizes to the rDNA and physically associates with the Pol I holoenzyme while Ccr4-Not disruption perturbs rDNA binding of multiple Pol I transcriptional regulators including core factor, the high mobility group protein Hmo1, and the SSU processome. Under nutrient rich conditions, Ccr4-Not suppresses Pol I initiation by regulating interactions with the essential transcription factor Rrn3. Additionally, Ccr4-Not disruption prevents reduced Pol I transcription when mTORC1 is inhibited suggesting Ccr4-Not bridges mTORC1 signaling with Pol I regulation. Analysis of the non-essential Pol I subunits demonstrated that the A34.5 subunit promotes, while the A12.2 and A14 subunits repress, Ccr4-Not interactions with Pol I. Furthermore, ccr4Δ is synthetically sick when paired with rpa12Δ and the double mutant has enhanced sensitivity to transcription elongation inhibition suggesting that Ccr4-Not functions to promote Pol I elongation. Intriguingly, while low concentrations of mTORC1 inhibitors completely inhibit growth of ccr4Δ, a ccr4Δ rpa12Δ rescues this growth defect suggesting that the sensitivity of Ccr4-Not mutants to mTORC1 inhibition is at least partially due to Pol I deregulation. Collectively, these data demonstrate a novel role for Ccr4-Not in Pol I transcriptional regulation that is required for bridging mTORC1 signaling to ribosomal RNA synthesis.
منابع مشابه
The histone H3 lysine 56 acetylation pathway is regulated by target of rapamycin (TOR) signaling and functions directly in ribosomal RNA biogenesis
Epigenetic changes in chromatin through histone post-translational modifications are essential for altering gene transcription in response to environmental cues. How histone modifications are regulated by environmental stimuli remains poorly understood yet this process is critical for delineating how epigenetic pathways are influenced by the cellular environment. We have used the target of rapa...
متن کاملChromatin-mediated regulation of nucleolar structure and RNA Pol I localization by TOR.
The target of rapamycin (TOR) protein is a conserved regulator of ribosome biogenesis, an important process for cell growth and proliferation. However, how TOR is involved remains poorly understood. In this study, we find that rapamycin and nutrient starvation, conditions inhibiting TOR, lead to significant nucleolar size reduction in both yeast and mammalian cells. In yeast, this morphological...
متن کاملRegulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae.
The TOR (target of rapamycin) signal transduction pathway is an important mechanism by which cell growth is controlled in all eucaryotic cells. Specifically, TOR signaling adjusts the protein biosynthetic capacity of cells according to nutrient availability. In mammalian cells, one branch of this pathway controls general translational initiation, whereas a separate branch specifically regulates...
متن کاملTor1 and CK2 kinases control a switch between alternative ribosome biogenesis pathways in a growth-dependent manner
Ribosome biogenesis is a major energy-consuming process in the cell that has to be rapidly down-regulated in response to stress or nutrient depletion. The target of rapamycin 1 (Tor1) pathway regulates synthesis of ribosomal RNA (rRNA) at the level of transcription initiation. It remains unclear whether ribosome biogenesis is also controlled directly at the posttranscriptional level. We show th...
متن کاملAmino acid-dependent signaling via S6K1 and MYC is essential for regulation of rDNA transcription
Dysregulation of RNA polymerase I (Pol I)-dependent ribosomal DNA (rDNA) transcription is a consistent feature of malignant transformation that can be targeted to treat cancer. Understanding how rDNA transcription is coupled to the availability of growth factors and nutrients will provide insight into how ribosome biogenesis is maintained in a tumour environment characterised by limiting nutrie...
متن کامل